Background

- Over 96,000 US work zones crashes (2015)
- 700 fatalities (2.0% of all roadway fatalities)
- 120 worker fatalities annually
 - 46% are struck by vehicle
- Most common type is rear end
- Common causes: following too closely, FTY, driver inattention, too fast for condition, improper lane change
Background

- Work zone crashes not well understood
- NDS data collected by SHRP2 Program offers a rare opportunity for a first-hand view of work-zone safety critical and base events

SHRP 2 Naturalistic Driving Study

- Largest naturalistic driving study ever undertaken
- 2,900 drivers, all age/gender groups
 - Most participants 1 to 2 years
- 3,900 data years; 5 M trip files; 32 M vehicle miles
- 2 years of data collection
- Vehicle Types: All light vehicles
- Six data collection sites
- Integration w/ detailed roadway information
Data Acquisition System

- Video cameras
 - Forward roadway
 - Rear
 - Driver face
 - Over shoulder
- Accelerometers
- GPS

Vehicle network information

Vehicle Kinematic Data

Represents vehicle position at 0.1 sec increments
Roadway Information Database

- 4 different data sources
 - ESRI: baseline data for entire country
 - State roadway inventory data: from 6 study states; data vary by state; about 200,000 miles
 - Mobile van data: very detailed, 12,542 centerline miles; 43,195 intersections, 518,570 signs; includes forward video
 - Supplemental data: from 6 study states, data vary by state

Objectives

- Project funded under FHWA Implementation Assistance Program in conjunction with the Minnesota DOT
- Develop relationship between speed and work zone and driver characteristics
 - Identify driver/work zone characteristics associate with safety critical events in work zone
 - Speed is used as a surrogate for crashes
 - Few crashes
 - Other surrogates such as lane position not reliable
- One of several analyses (also evaluating reaction point, merge behavior, and back of queue)
Identification of Work Zones

Identified potential WZ using 511 data (e.g., “construction”, “lane closure”) > 2 million records

* Linked 511 events to RID; select WZ > 3 days
* Requested # potential trips (9,290 work zones)

* Selected WZ ≥ 15 trips (1,680)
 * Reviewed forward video for (~ 700) to ensure active work zone was present

* Requested time series/forward video for subset (118 work zones)
 * Received ~ 4,800 time series traces (multi-lane, 4-lane, 2-lane)

* Identified additional 145 work zones (2 and 4-lane)
 * 2nd data request in progress
Data Utilized

- 4-lane divided roadways (speed limit 45 to 55 mph)
- 82 time series traces
- 14 unique work zones with lane closures
- 60 unique drivers
- Location (GPS) provided at 1 second interval
- Times series traces (0.1 second interval)
- Related vehicle position to work zone features

Data Reduction

- Environmental characteristics (forward video)
- Regular roadway characteristics (RID)
 - i.e. # lanes, median type, traffic control, speed limit, shoulder type
- Driver characteristics
 - Static from NDS database (i.e. age)
 - Reduced distraction and glance location
Data Reduction

- Work zone characteristics
- Reduced from NDS forward video
 - VMS
 - # lanes closed
 - WZ speed limit
 - type of lane shift
 - Shoulder/lane closures
 - lane shift
 - Start/end work zone
 - head to head traffic
 - work zone signs (static and dynamic)
 - Presence/location of workers/equipment
 - Location and type of barriers

Signs

- Assumed legibility distance for signs
 - 600 ft. for VMS, DSFS
 - 450 ft. for work zone speed limit
 - 180 ft. for static
 - Based on expected sign size and letter height
 - Worked with human factors expert
- Still need to account for impact of multiple signs
Speed Prediction Model

- Linear mixed effects model (LME)
- Used lme4 in R
- Used time series intervals as observations
- Accounted for multiple observations
 - Driver
 - Work zone
- Accounted for distance in relationship to work zone
- Goodness of fit evaluated using AIC and BIC
- Model included variables significant at 95%
- Modeled speed as a function of
 - Location within work zone
 - Driver characteristics
 - Work zone characteristics

<table>
<thead>
<tr>
<th>Description of variables</th>
<th>Estimate</th>
<th>Std.Err</th>
<th>T value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>driver age</td>
<td>-0.049</td>
<td>0.019</td>
<td>-2.658</td>
<td>0.008</td>
</tr>
<tr>
<td>age in miles eligibility distance</td>
<td>-0.833</td>
<td>0.166</td>
<td>-5.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9.4</td>
<td>speed limit</td>
<td>-3.469</td>
<td>0.112</td>
<td>-3.076</td>
</tr>
<tr>
<td>10</td>
<td>speed limit</td>
<td>-3.469</td>
<td>0.112</td>
<td>-3.076</td>
</tr>
<tr>
<td>11</td>
<td>work zone</td>
<td>-0.510</td>
<td>0.252</td>
<td>-2.030</td>
</tr>
<tr>
<td>12</td>
<td>work zone</td>
<td>-0.510</td>
<td>0.252</td>
<td>-2.030</td>
</tr>
<tr>
<td>13</td>
<td>concrete median</td>
<td>0.037</td>
<td>0.014</td>
<td>2.790</td>
</tr>
<tr>
<td>14</td>
<td>depressed median</td>
<td>0.037</td>
<td>0.014</td>
<td>2.790</td>
</tr>
<tr>
<td>15</td>
<td>guardrail</td>
<td>-1.043</td>
<td>0.157</td>
<td>-6.676</td>
</tr>
<tr>
<td>Work zone configuration</td>
<td>-2.072</td>
<td>0.081</td>
<td>-25.720</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>right shoulder closure</td>
<td>2.121</td>
<td>0.117</td>
<td>18.121</td>
</tr>
<tr>
<td>17</td>
<td>left shoulder closure</td>
<td>2.622</td>
<td>0.092</td>
<td>27.023</td>
</tr>
<tr>
<td>18</td>
<td>right lane shoulder closure</td>
<td>-3.063</td>
<td>0.092</td>
<td>-44.266</td>
</tr>
<tr>
<td>19</td>
<td>left lane shoulder closure</td>
<td>-0.815</td>
<td>0.080</td>
<td>-10.170</td>
</tr>
<tr>
<td>Channeling devices</td>
<td>-3.194</td>
<td>0.164</td>
<td>-19.790</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>concrete & asphalt</td>
<td>4.600</td>
<td>0.330</td>
<td>14.000</td>
</tr>
<tr>
<td>21</td>
<td>pavement & concrete</td>
<td>-1.930</td>
<td>0.183</td>
<td>-10.576</td>
</tr>
<tr>
<td>22</td>
<td>metal rails</td>
<td>-3.631</td>
<td>0.092</td>
<td>-39.707</td>
</tr>
<tr>
<td>23</td>
<td>vertical panels</td>
<td>-4.971</td>
<td>0.107</td>
<td>-46.016</td>
</tr>
<tr>
<td>24</td>
<td>channeling concrete barrier</td>
<td>-4.563</td>
<td>0.092</td>
<td>-66.372</td>
</tr>
<tr>
<td>25</td>
<td>concrete barrier and metal rails</td>
<td>-4.384</td>
<td>0.137</td>
<td>-30.650</td>
</tr>
<tr>
<td>Construction equipment</td>
<td>-1.257</td>
<td>0.266</td>
<td>-4.773</td>
<td>0.000</td>
</tr>
<tr>
<td>Descriptive place location</td>
<td>-0.085</td>
<td>0.025</td>
<td>-3.551</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>safety stop</td>
<td>-3.537</td>
<td>0.129</td>
<td>-27.164</td>
</tr>
<tr>
<td>27</td>
<td>weaving or changing lanes</td>
<td>-4.077</td>
<td>0.170</td>
<td>-24.669</td>
</tr>
<tr>
<td>28</td>
<td>drying or changing lanes</td>
<td>-4.303</td>
<td>0.130</td>
<td>-32.849</td>
</tr>
<tr>
<td>29</td>
<td>obstructions in traffic</td>
<td>0.066</td>
<td>0.142</td>
<td>0.469</td>
</tr>
<tr>
<td>Location</td>
<td>-0.915</td>
<td>0.157</td>
<td>-5.863</td>
<td>0.000</td>
</tr>
<tr>
<td>30</td>
<td>under 100 m</td>
<td>1.287</td>
<td>0.187</td>
<td>2.262</td>
</tr>
<tr>
<td>31</td>
<td>100 m to 200 m</td>
<td>1.886</td>
<td>0.175</td>
<td>10.787</td>
</tr>
<tr>
<td>32</td>
<td>200 m to 300 m</td>
<td>-0.050</td>
<td>0.157</td>
<td>-3.100</td>
</tr>
<tr>
<td>33</td>
<td>300 m to 400 m</td>
<td>-0.151</td>
<td>0.157</td>
<td>-0.971</td>
</tr>
<tr>
<td>34</td>
<td>400 m to 500 m</td>
<td>-3.568</td>
<td>0.155</td>
<td>-4.915</td>
</tr>
<tr>
<td>35</td>
<td>500 m to 600 m</td>
<td>3.833</td>
<td>0.155</td>
<td>2.484</td>
</tr>
<tr>
<td>36</td>
<td>600 m to 700 m</td>
<td>1.205</td>
<td>0.156</td>
<td>1.461</td>
</tr>
<tr>
<td>37</td>
<td>700 m to 800 m</td>
<td>-1.295</td>
<td>0.155</td>
<td>-0.824</td>
</tr>
<tr>
<td>38</td>
<td>800 m to 900 m</td>
<td>3.833</td>
<td>0.155</td>
<td>2.484</td>
</tr>
<tr>
<td>39</td>
<td>900 m to 1000 m</td>
<td>1.205</td>
<td>0.156</td>
<td>1.461</td>
</tr>
<tr>
<td>40</td>
<td>1000 m to 1100 m</td>
<td>-1.295</td>
<td>0.155</td>
<td>-0.824</td>
</tr>
</tbody>
</table>
Summary of Findings

- **Signing**
 - No impact of first work zone sign
 - -2.0 mph for VMS
 - Decrease at static lane merge (-3.5 mph)

- **Driver Characteristics**
 - Speed negatively correlated with age
 - -0.6 mph lower when driver glance is on roadway task
 - 0.7 m/s higher when interacting with cell phone
 - Lower for other types of distraction (interacting with in-vehicle controls, eating/smoking, interacting with passenger)

- **Work zone configuration (compared to shoulder closure)**
 - Head to head: -10.2 mph slower
 - Right lane/shoulder closer: -12.5 mph slower
 - Left lane/shoulder closer: -0.2 mph slower
Summary of Findings

- Channelizing device (compared to cones)
 - Concrete + cones: -3.0 mph
 - Barrels: -0.7 mph
 - Vertical panels: -1.8 mph
 - Concrete barrier + barrels: -2.0 mph
- Location
 - Begins to decrease ~500 m upstream
 - Levels out ~500 m downstream

Limitations/Challenges

- Significant data reduction
- Difficult to read work zone signs from video
- Work zones are complex environments
- Need to account for impact of multiple work zone devices
- Sample size (results are from interim model)
- Develop machine visioning techniques to identify and extract work zone features
Next Steps

- Significant data reduction
- Need to account for impact of multiple work zone devices
- Sample size (results are from interim model)
- Develop models for additional work zone types
 - 2-lane
 - Multi-lane