What Are We Walking Into?
Prioritizing Pedestrian and Bicycle Projects

Derek Leuer, PE | Traffic Safety Engineer
October 23rd, 2018
Toward Zero Deaths

Agenda

Topics
- Defining the Problem
- Metro Risk Assessment
- Statewide Risk Assessment
- Questions and Discussion
What is the Problem

- Every year 1,600 to 2,000 Pedestrians and Bicyclists are involved with Motor Vehicle Crashes
- Average is around 50 fatalities/year
- Average about 150 serious injuries/year

Minnesota Traffic Fatalities

Peak Year was 1968 with 1,060 Fatalities
- 1944 was 356 fatalities
- 1943 was 274 fatalities
- 2017 was 358 fatalities
What is the Problem

Ped and Bike Fatalities compared to Total Fatalities

Ped and Bike Fatalities compared to the Total Fatalities (%)

Historical Average of 10%

2016 = 17.1%
Past Solutions

• Most agencies were auto-centric
• Ped/Bike was an after thought
• Discourage Biking and Walking
• Cities built for cars, not people
• Discrimination?

Unintended Consequences

• People don’t walk/bike
• Discourage Biking and Walking
• Obesity Epidemic
• Asthma, heart conditions, etc.

57 percent of American children will grow up to be obese
Encourage Walking and Biking

!!Colliding of the Worlds!!

- How do we mesh the two?
- How do we fund ped/bike?
- Changing a culture
Metro Risk Assessment

Derek Leuer

What is the Problem

• Every year ~ 1,200 Pedestrians and Bicyclists are involved with Motor Vehicle Crashes

• Average is around 22 fatalities/year

• Average about 100 serious injuries/year
Metro District Safety Plan

• This is a data driven analysis

• Goal: To identify at-risk intersections and suggest countermeasures to reduce pedestrian and bicycle related fatal and serious injury crashes

• Metro Planners knew about previous risk analysis

• Set-Aside money starting in 2017

• Fluctuates, but $2-3 Million / Year

Metro District Safety Plan

• Fund safety directly (vs system continuity)

• Lots of requests (unknown if risk was real)

• Metro wanted to lead, not react

• Expand; Preserve and Enhance

• Maximize Investment

• Mix Stand-Alone Projects and Project Enhancements
 • Pavement Program
Data Summary

• Total Intersection = 5421
• 750 were evaluated
• 650 used in the final analysis
• Out of the 5421 intersections there was 2850 total crashes and 269 K+A crashes

Risk Factors

Signalized Risk Factors
• Bus Stop
• Major Median
• Major Speed Limit (35-50 mph)
• Near School
• Major Left Turn Signal (Protected)
• Approach Volume (25,001-35,000)
• Location Type (Suburban)
• Approach Volume (35,001-45,000)
• No on Street Parking

Un-Signalized Risk Factors
• No on Street Parking
• Location Type (Suburban)
• Speed Limit (30 or Less mph)
• Major Through Lanes (4)
• Major Median
• Near School
• Bus Stop
• Approach Volume (35,001-45,000)
• Location Type (Urban)
• Major Speed Limit (35-50 mph)
• Street Lighting (NONE)
• Number Legs (4)
Example of 5 Star Intersection

TH 5 (7th St. W) and St. Paul Ave

Signalized Risk Factors
★ • Bus Stop
★ • Major Median
★ • Major Speed Limit (35-50 mph)
★ • Near School
★ • Major Left Turn Signal (Protected)
★ • Approach Volume (25,001-35,000)
★ • Location Type (Suburban)
★ • Approach Volume (35,001-45,000)
★ • No on Street Parking

Countermeasures

Signalized Counter measures:
1. Confirmation Lights

Signalized Bus Stop Countermeasure:
1. Reduce Signal Cycle Length
2. Pedestrian Priority
3. Put Pedestrian Phase on Recall
4. Move Bus Stops to Far Side
5. Countdown Timers

Signalized Major Median and Approach Volume Countermeasure:
1. Increase pedestrian Phase Length
2. Reduce Signal Cycle Length
3. Pedestrian Priority
4. Put Pedestrian Phase on Recall

Un-signalized Countermeasure:
1. Raised Crossing
2. In Street Pedestrian Signs
3. Median Refuge Island
4. RRFB (Rectangular Rapid Flash Beacon)
5. HAWK
6. Curb Extension
2016 District Safety Plans Update

Metro Signalized Intersection Risk Factors

- Bus Stop
- Major Median
- Major Speed Limit (35-50 mph)
- Near School
- Major Left Turn Signal (Protected)
- Approach Volume (25,001-35,000)
- Location Type (Suburban)
- Approach Volume (35,001-45,000)
- No on Street Parking

Urban Segments

<table>
<thead>
<tr>
<th>Metric</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT</td>
<td>9000</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Road Geometry</td>
<td></td>
<td>Multi-Lane (4+)</td>
</tr>
<tr>
<td>Access Density</td>
<td>36</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Speed Limit</td>
<td>35-45</td>
<td></td>
</tr>
<tr>
<td>Primary Land Use</td>
<td></td>
<td>Urban or Suburban Retail</td>
</tr>
<tr>
<td>Severe HO + BE + SSO Crash History</td>
<td>0.019</td>
<td></td>
</tr>
</tbody>
</table>

Urban Intersections - Right Angle

<table>
<thead>
<tr>
<th>Metric</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Product</td>
<td>10000000</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Traffic Control</td>
<td>Signal</td>
<td></td>
</tr>
<tr>
<td>Major Corridor Speed</td>
<td>40</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Slew</td>
<td>5</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Adjacent Curve</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td>Primary Land Use</td>
<td></td>
<td>Urban or Suburban Retail</td>
</tr>
<tr>
<td>Severe Right Angle Crash History</td>
<td>0.006</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Product</td>
<td>5000000</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Traffic Control</td>
<td>Signal</td>
<td></td>
</tr>
<tr>
<td>Major Corridor Speed</td>
<td>35</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Slew</td>
<td>5</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Adjacent Curve</td>
<td>Present</td>
<td></td>
</tr>
<tr>
<td>Primary Land Use</td>
<td></td>
<td>Urban or Suburban Retail</td>
</tr>
<tr>
<td>Severe Ped/Bike Crash History</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>
2016 District Safety Plans Update

US 53 and 13th Street, Virginia, MN

Risk Factors Present

★ Cross Product
 - Major = 14,900
 - Minor = 2,600
 - Cross Product = 39 Million

★ Traffic Control Device (Signal)
★ Major Corridor Speed (45 MPH)
★ Skew (15 degrees)
★ On/Near Horizontal Curve (Yes)
★ Primary Land Use Type (Retail/Suburban)
★ Severe Crash Density
 - (1 severe ped/bike crash 2009-2013)

2016 District Safety Plans Update

DSP Intersection Risk Rating
2014-2015 Fatal and Serious Injury Crashes

Intersections
Bike-Ped K+A Crashes

45% of severe crashes
26% of locations

26% of the intersections had 45% of the crashes!
Over 300 intersections had some type of project selected and assigned!

Submitted Projects

- 20 Intersections
- Pedestrian Countdown Timers
- All 4 stars and above
- $240,000 in HSIP
A Selection of Treatments

- Warning signs
- Medians
- Curb Extensions
- Road Diets
- Reducing Corner Radii
- Advanced Stop Lines
- Raised Crosswalks
- In-Roadway Lights
- Pedestrian Hybrid Beacons
- Pedestrian Signals
- Grade Separation
- Striped Channelized Right Turns
- Blank-Out No Right Turn on Red Signs
- Lighting
- Gateway Treatment

Crosswalk Marking Placement

- Our Flowchart (See MnDOT TEM)
Crosswalk Marking Placement

- Our table**** (See MnDOT TEM)
 - Developed based on Zegeer study and other national studies for additional treatments (Virginia, Colorado, Washington, etc.).

<table>
<thead>
<tr>
<th>Table 13.1 Pedestrian Facility Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Item description</td>
</tr>
<tr>
<td>Additional notes</td>
</tr>
</tbody>
</table>

What Else?

- Emergency vehicles – blink across in a row. How about up the pole?
- What else catches your eye?
- Balance between attention and distraction
The End!

Questions? Discussions?

Derek Leuer